
Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 63 | P a g e

Deadline-Based Scheduling Algorithm for Divisible-Load in Grid

Computing

Prashant Ku. Chandan
1
, Yashwant Singh Patel

1
, Moumita Ghosh

1
, Sarita Das

2
,

Manoj Ku. Mishra
1

1
(School of Computer Engineering, KIIT University, Bhubaneswar-24, Odisha, India)

2
(Department of Computer Science & Engineering, EAST, Bhubaneswar-24, Odisha, India)

ABSTRACT
The divisible load model is motivated by divisible load theory, where both communication and computation can

be arbitrarily divisible into as many independent partitions as required and facilitates a good approximation for

many real-world application systems such as those arising in large physics experiments. Scheduling an

application with divisible load in data grid is significantly important because of its dynamic nature. Therefore,

this paper presents DBSA scheduling model to provide deterministic QoS to arbitrarily divisible applications

executing in a grid environment. In addition, the simulation uses a more realistic platform and provides an

analysis of the algorithm for homogeneous platforms and presents the comparison results with multi-round

algorithm known as UMR (Uniform Multi Round) based on two factors cost and makespan. The simulation

result shows that the proposed DBSA minimizes the makespan, cost and balance the load more efficiently.

Keywords- Divisible Load Theory (DLT), Quality of Service (QoS), UMR (Uniform Multi Round).

I. INTRODUCTION
Initially, the grid computing provided vast

computational platform to the applications requiring

high performance computations. Day by day, the use

of grid has modified its own definition. Now a day,

besides computational resources, data services are

also provided by the grid computing to various kinds

of applications ranging from vast scientific and

research applications to short term on-demand

applications. Grid computing creates a virtual

platform where dynamic, geographically dispersed,

heterogeneous computer resources connected over

high latency networks are combined together to

achieve a common goal. The emergence of grid

includes; (i) use of remote, (ii) underutilized

resources and (iii) need to execute large applications

with less cost. But, to find an idle system and to

allocate resources properly to the appropriate

applications is a challenging task in grid

environment.

Grid scheduling is defined as the process of

mapping applications over multiple numbers of

administrative domains. This process contains

searching of multiple administrative domains for the

resources to execute jobs at a single machine or

schedule a single job to multiple resources at a single

site or multiple sites [1]. Job is described as to be

anything that requires resources and the phrase

'resource' means anything that can be scheduled, it

can be a machine, disk space, a QoS network and so

forth. Grid scheduling involves three major phases-

Phase1: Resource Discovery: In this phase resources

are gathered for further processing, Phase2: Resource

Information Gathering: Detailed information of

available resources is accumulated, Phase3: Job

Execution: Finally jobs are executed with their

assigned resources [2]. A job scheduler is a software

application that maintains information about the

current utilization of machines to determine idle

systems and assigns jobs to them for computation.

According to ref. [3] Divisible Load scheduling in

grid computing has emerged to take the prevalence of

parallel computing where cumulative data load is

distributed among lower hierarchical level nodes and

processors.

The remainder of this paper is organized as

follows. In section II, a few divisible load scheduling

models are briefly discussed along with their

shortcomings. In section III, A "Deadline-Based

Scheduling Algorithm for Divisible-Load in Grid

Computing Environment" has been proposed. The

simulation result is shown in section IV. The final

section concludes the paper with discussion and

analysis of results.

II. RELATED WORK
The Divisible Load Theory (DLT) is a

powerful model for modeling data intensive grid

problem where both communication and computation

load can be partitioned arbitrarily among a number of

processors and links, respectively. Many models are

RESEARCH ARTICLE OPEN ACCESS

Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 64 | P a g e

proposed based on DLT. Some of them are presented

here.

Dantong Yu et al. [4] proposed a model for

grid computing platform using divisible load

scheduling theory. They use the divisible load (data)

scheduling theory for grid scheduling and predict the

performance. They discussed an example regarding

the STAR experiment in the RHIC project. A simple

divisible calculation using typical grid infrastructure

numbers is also presented to illustrate the suitability

of divisible load theory for grid problems.

In the paper [5], architecture of decoupled

scheduling for data intensive applications is

proposed. They proposed a model of Task Data

Present (TDP). The experimental results have shown

that data transfer is minimum, when the job is

scheduled on that site which contains the data. In this

case, when there is no replication of data the response

time suffers. It happens because only few sites those

are hosting the data are completely overloaded. The

drawback of this model is it maps tasks only to those

sites which contain the required data. In this model

only communication time is considered but not for

dividing the load.

To overcome this draw back Monir

Abdullah et al. [6] proposed a new model namely

Adaptive TDP (ATDP) model which reduces the

makespan. They try to balance the load by

considering the whole system (all sources), in other

word, the node speed fraction was calculated together

with communication time. Here both communication

and computation time are considered. In addition to

this, paper [7] proposes another model named as

A
2
DLT which considers both the communication

time as well as computation time. These models are

better than TDP because TDP model is proposed

without considering input transfer time. But main

problem with this model is that it transfers data from

site to the working node without considering

bandwidth and processing capability of the working

node.

In divisible load theory, a single round

scheduling strategy is addressed in [8]. In this

strategy the load is completely divided and

distributed among all the nodes for processing in a

single round. In this strategy, the processing nodes

that are waiting for data transmission will be affected

by long idle times. To resolve this issue for data

intensive applications, a multi-round strategy has

been proposed in [9]. In this strategy application is

divided and again subdivided into fractions and

distributed in a repetitive sequence. The multi-round

strategy uses pipelining and thus reduces the idle

time.

Yang Yang et al. [10] proposed a multi-

round algorithm to schedule parallel divisible

workload applications named as UMR (Uniform

Multi Round). This algorithm uses multiple rounds

for overlapping communication and computation

among a master and several workers. However

rounds must be uniform and in each round master

dispatches identical chunks to all the workers. So this

results in an approximately optimal number of

rounds.

The above algorithms are better for cluster

computing environment where resources are more

closely connected but may not be suitable in a grid

environment where resources are more loosely

connected leading to a significant communication

cost. Therefore this paper proposes a new divisible

load algorithm which computes the application

within a given deadline and cost.

III. DEADLINE-BASED SCHEDULING

MODEL FOR DIVISIBLE-LOAD IN GRID

COMPUTING ENVIRONMENT
The proposed model maximize Divisible-

load distribution among the processors and computes

the application within the given deadline and cost in a

homogeneous environment.

A. Task Model

Each divisible job Ji of an application is

characterized by a 3-tuple (Si, Loadi, D), where Si ≥ 0

is the startup time of the working node, Loadi > 0 is

the total load size of Ji, and D > 0 is the user defined

relative deadline, indicating that it must complete

execution by time-instant Si + Di.

B. System Model

The computing cluster used in DLT is

comprised of a head node denoted by W, which is

connected to m working nodes i.e. processing nodes

denoted by p1, p2, p3….pm. All processing nodes have

the same computational power and all the links from

the head to the working nodes have the same

bandwidth as shown in fig. 1.

Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 65 | P a g e

C. Assumptions for the proposed model

1) The Grid is a collection of geographically

distributed clusters.

2) The Load of the application is divisible i.e. where

both communication and computation of the

application can be partitioned arbitrarily among a

number of processors and links respectively. Each

divisible part is called job.

3) The head working node of the cluster does not

participate in the computation – its role is to accept or

reject incoming jobs, execute the scheduling

algorithm, divide the received workload and

distribute data chunks to the working nodes.

4) Data transmission does not occur in parallel i.e. at

any time, the head working node may be sending data

to at most one working node. And working node

transfer data to processing node for parallel

execution. And each processing node completes

executing one job's chunk before moving on to the

chunk of any next job that may also have been

assigned to it.

5) The head working node and each processing node

is non-preemptive. In other words, the head node

completes the dividing and distribution of one job's

workload before considering the next job.

6) Different jobs are assumed to be independent of

one another; hence, there is no need for processing

nodes to communicate with each other.

7) All the resources upon which a particular job will

be distributed by the head node are available for that

job over the entire time-interval between the instant

that the head node initiates data-transfer to any of

these nodes, and the instant that it completes

execution upon all these nodes.

8) Each processors of a Cluster have same bandwidth

and processing capability.

IV. SCHEDULING ALGORITHM
The following notations are used:

D = Deadline of the Client Application

WPi = Cost of processing time per unit workload of

the resource i

WMi = Communication Cost per unit workload of the

resource i

Si = Execution start time of a resource i

Load = The size of workload of the application

LoadR = Remaining load

CHUNK = Total work load

Chunkj = Load for processor j

LCti = Local communication cost for unit load of a

resource i

LPci = Local processing cost for unit load of a

resource i

GCmi = Global communication time of a resource i

MakespanG = Global makespan of a resource i

Resource capability can be calculated as follows

WP = processor capability/number of processors

availability in that resource………………………..(1)

Communication-to-Computation ratio =

 WMi /WPi…………………………………………..(2)

GCmi = CHUNK×WMi ………... ……………........(3)

Makespan of jobs for a resource Ri =

MakespanG = GCm + Di……………………….......(4)

Processing cost of the executing load in a resource =

Makespan × Cost per unit time …………………...(5)

DBS ALGORITHM

1. For i=1 to n

2. Wpi = LPc of a processor in Ri \ number of

processors in Ri \\ Resource capability

Fig. 1 System Model

Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 66 | P a g e

3. Sort the Communication-To-Computation ratio of

resources (WM [i] / WP[i]) in decreasing order.

4. LoadRLoad

5. While (LoadR > 0)

6. Take resources one by one in decreasing order by

their weight ratio (WM [i] / WP[i])

7. Di Set the deadline for the resource i

8. Si 0

9. Alloci 0

10. j 1 // Take the jth processor of resource Ri

11. While (j ≤ m)

12. Begin

13. If (LoadR ≤ 0) then

14. Break EndIf

15. If (Si > Di) then

16. Break EndIf

17. Chunkj = (Di-Si) / (LCti + LPci)

18. If (Chunkj > LoadR) then

19. {

20. Chunkj = LoadR

21. }

22. If (Chunkj > LoadR && j = 1)

23. {

24. Di = Chunkj (LCti + LPci)

25. }

26. Comp.Timej = Chunkj ×LPci

27. Comm.Timej = Chunkj × LCti

28. Si = Si + Comm.Timej

29. CHUNKi = CHUNKi + Chunkj

30. Alloci = Alloci + Chunkj

31. LoadR = LoadR – Alloci

32. Else

33. j = j+1

34. Endwhile

35. GCmi = CHUNKi × WMi

36. MakespanG = GCmi + Di

37. Dispatch different chunks to their respective

processors one after another in the order of their

index.

38. If (LoadR > 0) then

39. Load = LoadR and Schedule in the next

scheduling cycle with a next resource and new

deadline.

V. EXPERIMENTS AND RESULTS
The proposed work is implemented in java

and J2EE to simulate a grid environment for the

experiment. Simulation is done by taking the user

input. The application asks for number of working

node or resources. User enters the value of deadline,

load, bandwidth and processing capability of

processor. This section consists of two parts i)

computing platform ii) comparison with previous

algorithm.

A. Computing Platform

Here a single cluster is considered as a

computing platform. In UMR: A multi-Round

Algorithm [10] for scheduling divisible workloads a

master/worker model with m worker processes

running on n processors. The master sends out chunk

to worker/processors over a network. And author

assumed that the master uses its network connection

in sequential fashion. In our proposed approach

makespan is computed for both way serial and

concurrent communication. If the graph plots in

between the chunk and makespan then it is found that

makespan value for the concurrent communication is

lesser in comparison of sequence communication.

Method for computing comm. time and comp. time

1. For UMR communication

Comm.Time = No of processors × Wm ×Chunki

Comp.Time = Wp ×Chunki

Makespan = No of processors × Wm × Chunki + Wp ×

Chunki

Cost (RS.) = Makespan × Cost per Sec

2. For DBSA communication

X = (D-S) / (WM + WP)

Chunk = MIN(X, Load)

Comm.Time = Wm X Chunki

D=D-Comm.Time

Comp.Time = Wp × Chunki

Cost (RS.) = Makespan × Cost per Sec

Here we take example for DBS and UMR Algorithm

in which LWm = 0.2, Wp = 0.6, We assume that cost

for 1 sec = 10INR.

B. Comparison with UMR Algorithm

In this section DBS algorithm is compared

to UMR algorithm [10]. The performance of these

algorithms is compared with respect to two

parameters such as makespan and cost as shown in

table 1. Graphs are plotted in between load vs.

makespan and load vs. cost as shown in fig. 2 and 3.

Here load is same for both the algorithm, with the

same load both the algorithm has concluded for

different makespan and cost.

Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 67 | P a g e

Fig. 2 Comparison with Makespan and Chunk data

size.

Fig. 3 Comparison with Cost and Chunk data size.

TABLE I

 Comparison between DBSA and UMR based on Makespan and Cost

In the above graphs it is concluded that when

the Load is same, our proposed algorithm DBS shows

minimum makespan and cost in comparison to UMR

algorithm. So DBS algorithm gives better result than

UMR.

VI. CONCLUSION

The proposed model maximize Divisible-

load distribution among the processors of a selected

resource and computes the application within the

given deadline and cost in a homogeneous

environment. The performance of the above

algorithms is compared with respect to makespan and

cost. Graphs are plotted; load vs. makespan and load

vs. cost. When the Load is same, DBS shows

minimum makespan and cost and balance the load

more efficiently in comparison to UMR. So DBS

algorithm gives better result than UMR. In future, the

model can be extended to support a heterogeneous

grid environment.

REFERENCES
[1] Jennifer M. Schopf, “Ten actions when grid

scheduling - The User as a Grid Scheduler”,

http://www.mcs.anl.gov/uploads/cels/papers/

P1076.pdf.

[2] D. Thilagavathi and Dr. Antony Selvadoss

Thanamani, "HEURISTICS IN GRID

SCHEDULING" International Journal of

Advanced Research in Computer

Engineering & Technology

(IJARCET),Volume 2 Issue 8, August 2013.

[3] Thomas G. Robertazzi and Dantong Yu,

Multi-Source Grid Scheduling for Divisible

Loads, 40th annual conference on

information sciences and systems, princeton

university, march 22–24, 2006.

[4] D. Yu and T. G. Robertazzi, “Divisible Load

Scheduling for Grid Computing”, the 15th

IASTED International Conference on

Parallel and Distributed Computing And

Systems, November, 2003, Marian Del Rey,

CA, USA.

[5] K. Ranganathan, I. Foster, “Decoupling

Computation and Data Scheduling in

Distributed Data-Intensive Applications,”

11th IEEE International Symposium on High

Performance Distributed Computing, 2002.

[6] M. Abdullah, M. Othman, H. Ibrahim and S.

Subramaniam, “A New Load Balancing

Scheduling Model in Data Grid

Application”, International Symposium

DBSA UMR

CHUNK MAKESPAN Cost(Rs) MAKESPAN Cost (Rs)

5 3.7 37 4.008 40.08

10 7.7 77 8.034 80.34

15 11.2 112 12 120

20 15 150 16.008 160.08

25 18.5 185 20.016 200.16

Yashwant Singh Patel et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 4), January 2014, pp.63-68

www.ijera.com 68 | P a g e

on Information Technology Volume:1, 2008,

pages 1-5.

[7] Othman, M., M. Abdullah, H. Ibrahim and S.

Subramaniam, 2007. A
2
DLT: Divisible load

balancing model for scheduling

communication intensive grid applications:

Computational science. Lecture Notes

Comput. Sci., 5101: 246-253. DOI:

10.1007/978-3-540-69384-0_30.

[8] X. Lin, Y. Lu, J. Deogun, and S. Goddard.

Real-time divisible load scheduling for

cluster computing. Technical Report TR-

UNL-CSE-2005-0014, CSE Department,

University of Nebraska-Lincoln, December

2005.

[9] X. Lin, Y. Lu, J. Deogun, S. Goddard Multi-

round real-time divisible load scheduling for

clusters 15th International Conference on

High Performance Computing, Springer

(2008), pp. 196–207.

[10] Yang, Y.; Casanova, H., "UMR: a multi-

round algorithm for scheduling divisible

workloads," Parallel and Distributed

Processing Symposium, 2003. Proceedings.

International , pp.9, 22-26 April 2003

